题意
Sol
欲哭无泪啊qwq。。。。昨晚一定是智息了qwq
说一个和标算不一样做法吧。。
显然\(x\)轴是可以三分的,半径是可以二分的。
恭喜你获得了一个TLE的做法。。
然后第二维的二分是没有必要的,直接拿圆的标准方程推一下取个最大值就行了。。。。。昨晚没想到qwq给数学老师丢脸了。。
#include#include #include #define double long double using namespace std;const double eps = 1e-7, INF = 1e18;const int MAXN = 1e5 + 10;inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar(); return x * f;}int N, up, down;double max(double a, double b) {return a > b ? a : b;}double min(double a, double b) {return a < b ? a : b;}struct Node { double x, y;}a[MAXN];int check(int x, int y) { if(x < 0 && y > 0) return 1; else return 0;}double mxr;double sqr(double x) { return x * x;}double f(double x) { double mx = 0; for(int i = 1; i <= N; i++) mx = max(mx, fabs((sqr(a[i].x - x) + sqr(a[i].y)) / (2.0 * a[i].y))); return mx;} int main() { N = read(); double L = INF, R = -INF; for(int i = 1; i <= N; i++) { a[i].x = read(), a[i].y = read(); up = min(up, a[i].y); mxr = max(a[i].y, mxr); L = min(a[i].x, L); R = max(a[i].x, R); } if(check(up, mxr)) {puts("-1"); return 0;} mxr = INF; if(up < 0) for(int i = 1; i <= N; i++) a[i].y = -a[i].y; int tim = 100; while(tim--) { double x = (2 * L + R) / 3, y = (L + 2 * R) / 3; f(x) < f(y) ? R = y : L = x; // printf("%Lf %Lf\n", f(x), f(y)); } printf("%.10Lf", f(L)); return 0; }